If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5x^2-32=0
a = 5; b = 0; c = -32;
Δ = b2-4ac
Δ = 02-4·5·(-32)
Δ = 640
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{640}=\sqrt{64*10}=\sqrt{64}*\sqrt{10}=8\sqrt{10}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-8\sqrt{10}}{2*5}=\frac{0-8\sqrt{10}}{10} =-\frac{8\sqrt{10}}{10} =-\frac{4\sqrt{10}}{5} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+8\sqrt{10}}{2*5}=\frac{0+8\sqrt{10}}{10} =\frac{8\sqrt{10}}{10} =\frac{4\sqrt{10}}{5} $
| 10=b(2/3 | | 0÷-12=x | | 3x2–18=–6 | | 14x-50=14x-48 | | (K/4)+2-k=10 | | H(x)=9×2+3 | | a/29=$ | | 6y+2=9y-16 | | -89+89=x | | 3x-3.25=16 | | x+(-5/6)=(-5/3) | | -4x-2=-4-5x | | 4.5w=5.1w-20 | | 2h-1/10=5.8 | | (4x-1)-2(x-1)=3x-(4x+2 | | 8h=15,830 | | (12-2n)1/2=0 | | (8/11)×(n-10)=64 | | z/4+2=6z/4 | | 3b=2b+21 | | (x-3)^2=2x^2-14x+16 | | -1y=35 | | {-1y=35 | | 2x+x+17=36-7 | | x-35=-26 | | 44=2(-6p-2) | | -3/4n=60 | | 2x+34=4(×+5) | | (4m+9)=−3(2m−5) | | -4=9x=23 | | 2(4y−1)=6 | | k/3=6=8 |