If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5x^2-24x+22=0
a = 5; b = -24; c = +22;
Δ = b2-4ac
Δ = -242-4·5·22
Δ = 136
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{136}=\sqrt{4*34}=\sqrt{4}*\sqrt{34}=2\sqrt{34}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-24)-2\sqrt{34}}{2*5}=\frac{24-2\sqrt{34}}{10} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-24)+2\sqrt{34}}{2*5}=\frac{24+2\sqrt{34}}{10} $
| z/8+1=-1 | | -3(d-86)=9 | | 3(2x–5)–4x+8=-1 | | 95u-260=55u-20 | | 1)x.7=18 | | 1/2(16x6)=2 | | 30-(2c=3)=2(c+6)=c | | 7 p-3=4 | | 3/4(16x-20)=12(x+2) | | 15-12u=21-16u | | 11x+10=10x+12 | | 3x8-4=3x | | 2^n=10^8 | | 7x-4(x=8)=56 | | 6y²-y²=4 | | X+.4x=85000 | | (1+5x)=41 | | 1)x+7=18 | | 43-5u=52-11u | | 43x=12-5x | | 6(y+4)=48 | | ¾+x=2 | | 7-12u=12-17u | | 9=7=+a | | 11-30=-a-9 | | 0=-2/3(3x+6) | | 13x-5=8x+19 | | 1/5(x-3)=2 | | s+2s+6s+s-6s=40 | | 6=2b–7 | | 3(3n-2)-4(5n+2)=5n-94 | | -8x=-320 |