If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5x^2+x=0
a = 5; b = 1; c = 0;
Δ = b2-4ac
Δ = 12-4·5·0
Δ = 1
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1}=1$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-1}{2*5}=\frac{-2}{10} =-1/5 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+1}{2*5}=\frac{0}{10} =0 $
| 2+d/4=-4 | | −6(s+7)=10(3−s) | | 15-(x-2)=17-x | | 9p+4p=91 | | -9w+2=-4(w+7) | | 1.94x-10/8x+4.32=2(1.15+85)/5 | | 4x-3x+45=-36 | | 12/x=16/x+2 | | 3y+1y=2 | | 10.3r=1.3 | | -11/9n+11/9=22 | | 30/a-2;a=6 | | 2x-4=15+x | | 5.2(x-1.75)=-10.4 | | -11/3(1/3n+1/3)=22 | | 1/2(4x+6)-9=110 | | 100-x=75+2x | | 3x-3x-8=7 | | x-4=15+x | | 1/x+4=6 | | 3m;m=1/6 | | 3s+10=45 | | 4(u+3)=16 | | 38-b/2;b=12 | | (9x-4)+40=90 | | 3(s+5)=25 | | r7=-8 | | 3(d+4)=15 | | 13w−7w+3=9 | | 1(2/5x)=7 | | 4(r+4)=20 | | 2-2+5x=0 |