If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5x^2+9x-4=0
a = 5; b = 9; c = -4;
Δ = b2-4ac
Δ = 92-4·5·(-4)
Δ = 161
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(9)-\sqrt{161}}{2*5}=\frac{-9-\sqrt{161}}{10} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(9)+\sqrt{161}}{2*5}=\frac{-9+\sqrt{161}}{10} $
| t=3.5=8 | | -6+w=-2w | | 6(2x+3)=-9x+25 | | 3(6z+1)-6=159 | | -2u=-5u+9 | | 1/4(x+60)=-31 | | 8x/2+4=2x/3 | | -6-3s=-5-4s | | -15/45+x=-3 | | (66+25)x=450+25x | | 3/2x-3=2/x+1 | | -60=7y-4 | | −4p+(−6p=) | | 130-3x+5x=180 | | 8y=9y-6 | | -6.5r=-58.5 | | 72=-6f | | -6=-5+c | | 3=6+10x | | -10+5j=3j | | m-18/5-7m-21/7=1 | | w-8=7.3 | | 9x-8=13x-17 | | 7k=9+8k | | -12=y/5 | | 140+.30x=70+.40x | | 50=3x-16 | | 7+9=8t | | 5+10z=9z | | (3-x)/2+6=1 | | 2d–12=92 | | m=-8;(7,-3) |