If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5x^2+96x-576=0
a = 5; b = 96; c = -576;
Δ = b2-4ac
Δ = 962-4·5·(-576)
Δ = 20736
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{20736}=144$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(96)-144}{2*5}=\frac{-240}{10} =-24 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(96)+144}{2*5}=\frac{48}{10} =4+4/5 $
| 3x-12-161=2-16+5 | | 2d+10=d | | 5+5y=7+2y | | 9x+4=7-4xx= | | 5(2x+2)-3=37 | | -8(z+4)=-7(z+-4)+3 | | (a-5)^2=275 | | 14r-9r=20 | | 3(4f-6)=8f-(4f+3) | | 16c-18c=12 | | (a-5)^2=a^2-275 | | -9s+8=35 | | 59n−=23n | | -8+6m=1/(-4m+16) | | Y=2x•3 | | -5=k/8+2 | | (a-5)2=a2-275 | | -3x=18.6 | | 10+x*35=10*56 | | 3w+9w=-31 | | 2r−1=1 | | 36-4x=11-7x | | 7b+A=89 | | 10x+30x-9=8(5x+8) | | 2(r-4)=5-r | | 8=(3/4a)+12-a+4 | | t+10=74-14 | | 6x+10x-2=4(4x+5) | | 3+0.5/x=17-3x | | 3+(0.5/x)=17-3x | | 18p-10p+p=9 | | 12-6q=2 |