If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5x^2+7x=4
We move all terms to the left:
5x^2+7x-(4)=0
a = 5; b = 7; c = -4;
Δ = b2-4ac
Δ = 72-4·5·(-4)
Δ = 129
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(7)-\sqrt{129}}{2*5}=\frac{-7-\sqrt{129}}{10} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(7)+\sqrt{129}}{2*5}=\frac{-7+\sqrt{129}}{10} $
| 6y+27=3 | | 12-0.25x=2x+1 | | 4y-34=72 | | 4y-34=71 | | X(3)(x)=x(10) | | X(3)(x)=x10 | | y=28-37 | | -v+259=200 | | -5=(-8+v)÷3 | | y=40+75 | | 4y+27=3 | | y=2.9+6.6 | | -5=(-8+v)/3 | | 7x-0.40=6x-1.4 | | 6x25=2 | | 24+x3=51 | | x2-18=-28 | | x÷6=23 | | -4(2x+11)=6(x+3)-6 | | 32=5(x-4) | | 6^2+4x-24=0 | | .25(3+a)=5 | | 6y+10=1 | | 14+0.4x=1 | | 1.2y-3.44=1.3 | | 8x+11=x+29 | | 16.50(x+289)=18.7(x+274.60) | | 2x+5/3-x+10/6=0 | | | | | | | | |