If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5x^2+6x=63
We move all terms to the left:
5x^2+6x-(63)=0
a = 5; b = 6; c = -63;
Δ = b2-4ac
Δ = 62-4·5·(-63)
Δ = 1296
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1296}=36$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(6)-36}{2*5}=\frac{-42}{10} =-4+1/5 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(6)+36}{2*5}=\frac{30}{10} =3 $
| M1=x+10 | | -22=5y-2 | | 6x+10=1x-5 | | y^2-^Y=114 | | 19=7x-30 | | -7x+42+6x=36 | | 45=3y-3 | | 5.2x=-34.84 | | 271=113-x | | 87-y=238 | | (4x1)+(2x3)=0 | | y-1/5(8)=3/8 | | 23x=72- | | 6(3+3x)=27 | | -7.9=-1.5+u/4 | | 85+x=176 | | -3(-2x+4)=18 | | 45+x=367 | | |7x-1|=9 | | 5/4w=6/7 | | 0.3(x+20)-0.03(x-60)=18.6 | | -5=+3r | | 3/m-2=7/m=2 | | y÷8=6 | | 2u-10=16 | | 2(x-3)+5=2x+1 | | (3x-4)+(5x/2)=13 | | 5(u+1)=-3u-43 | | (x/2)+3=5 | | 2=7(3m+8)+6 | | 309+x=339 | | 81+x=172 |