If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5x^2+60x=0
a = 5; b = 60; c = 0;
Δ = b2-4ac
Δ = 602-4·5·0
Δ = 3600
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{3600}=60$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(60)-60}{2*5}=\frac{-120}{10} =-12 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(60)+60}{2*5}=\frac{0}{10} =0 $
| 13-2u=-25 | | 15-4w=-1 | | 13–2u=-25 | | x^2+7x-350=0 | | 86=35+3c | | 9m=10m+10 | | (z-5)-4=2.25 | | 2/5x-4=-5 | | w^2-9w+63=0 | | -34=1+-5y | | 27^x=9^3x-1 | | 3x-2=4x-13 | | 6n(n-8)=0 | | (10)3(x+1)=12 | | -6(6r-4)=-228 | | c/8+-17=-22 | | a+18=-4 | | 14-w=-4 | | -2x+-18=6x+30 | | g/5+21=24 | | 8(1-2p)=104 | | |9-3a|=11 | | -(1)/(4)x+6=(2)/(3)x+28 | | (u+1)^2=2u^2-5u+13 | | -2x+-18=6x-30 | | 90+37+x=180 | | 16^2+x-1=0 | | u+1^2=2u^2-5u+13 | | 4=22-2p | | s/2+6=8 | | -13=4(u-4)-7u | | 15=3(c-75) |