If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5x^2+5x-20=10
We move all terms to the left:
5x^2+5x-20-(10)=0
We add all the numbers together, and all the variables
5x^2+5x-30=0
a = 5; b = 5; c = -30;
Δ = b2-4ac
Δ = 52-4·5·(-30)
Δ = 625
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{625}=25$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(5)-25}{2*5}=\frac{-30}{10} =-3 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(5)+25}{2*5}=\frac{20}{10} =2 $
| 3g+30-5=-8 | | 3x-12+5=11 | | 5q+1=180 | | (20-x-x2)^x2-4x=(8+3x)^x2-4x | | 78+2x-15+x+12=180 | | 3x-4/5=8+2x | | 7z+8=71 | | -3p+8=3p-4 | | 10x-3x=7x | | 12(x-4)=24 | | X²-x=4.2 | | -v-10=10+v | | 30-3x=6x+14 | | |3(2x−4)+6x=12| | | 8t^2-10t-195=0 | | (x+10)+(x+10)=3x+10 | | 2y+12=9 | | 11.4=2(x-1)=63 | | 10+8d=-10+10d | | x+19+x+6+75=180 | | 2s^2-3=240 | | x/4+0.67=31 | | (3x+7x+2x)+(19+5+8)=180 | | –90=10(y–8) | | 3x+30+2x+5=12x-33 | | 2.08x-13=2.6 | | y+23=29 | | 3n+(N+1)=5n+3-2n | | (9-8x-4x)+8(3x+4)=11 | | 14+4n=8n-5(n-2) | | 5(3+4x)=239 | | -8+3g=2g |