If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5x^2+4x-7=0
a = 5; b = 4; c = -7;
Δ = b2-4ac
Δ = 42-4·5·(-7)
Δ = 156
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{156}=\sqrt{4*39}=\sqrt{4}*\sqrt{39}=2\sqrt{39}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-2\sqrt{39}}{2*5}=\frac{-4-2\sqrt{39}}{10} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+2\sqrt{39}}{2*5}=\frac{-4+2\sqrt{39}}{10} $
| 7g=4g-15 | | 2(9s+3)=6(s+1) | | 5/3x=64 | | 15y+3y–12=24 | | -x²+7x-14=0 | | x+x-15=15 | | -2g=-1 | | 15-h=4-2h | | 4x–2x+5x=14 | | 5-6(1+7h)=-31 | | 22=7/x | | -8n-2n=28 | | 6a-3a+4a=7a | | X+(x+10+2x)=28 | | 4x+2x+20=180 | | x0.1=15 | | 15x/5=14x/12 | | 15x/5=14x12 | | (x+x)+(x+4+x+4)=28 | | 15-(7+9p)=35 | | (8/9)i+12=(2/9)i+34 | | X+1.25y=3 | | 3x+15-5x-5=180 | | (2x+1)(3x-2)=2 | | x+(x+1)+(x+2)-2x=13 | | 7-x=2x+27 | | x+46=3x-20 | | 1+5x-15=16 | | 4x+28.5=281 | | -3x+4=2x+-8 | | 5b-1(b=3) | | 3a+4(a=5) |