If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5x^2+4x-12=0
a = 5; b = 4; c = -12;
Δ = b2-4ac
Δ = 42-4·5·(-12)
Δ = 256
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{256}=16$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-16}{2*5}=\frac{-20}{10} =-2 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+16}{2*5}=\frac{12}{10} =1+1/5 $
| 5m2+4m-12=0 | | 5x^2+15x−140=0 | | 5x2+15x−140=0 | | -5(w+3)=-30 | | 15x+13=10x+15 | | 38+106+x=180 | | 15x+13=10x+2 | | -3p-14+9p=22 | | 3b+4.4=2.6–6b | | 53+85+x=180 | | 3x – 5 = -8 + 5x | | -17=h/3+23 | | 34+52+x=180 | | 8c+15=71 | | 3=j+13/9 | | 4x+1=2x+47 | | k/3+12=21 | | f+14/7=8 | | 8(r-89)=80 | | 9(x-1)-8x=-3(x+5)+3(x-5) | | s/4+9=13 | | 3y-9+5y=15 | | d/5+47=53 | | c-81/2=5 | | 4(k-77)=48 | | n+44/10=7 | | 5=11-3h | | 8.5x-2(2x+8)=-8 | | 2(x+4)+10=x+13 | | 18−6u−3=-17−2u | | 8.5x-2(2x+8)=6 | | -9(n+66)=-63 |