If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5x^2+3x-15=0
a = 5; b = 3; c = -15;
Δ = b2-4ac
Δ = 32-4·5·(-15)
Δ = 309
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(3)-\sqrt{309}}{2*5}=\frac{-3-\sqrt{309}}{10} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(3)+\sqrt{309}}{2*5}=\frac{-3+\sqrt{309}}{10} $
| 5.2+3.6x–8=x | | +3=2x-1 | | 5.50x+19=6.75x+10 | | 7=3(5u+4)+6 | | X+4=-6x+8 | | −58x=−160 | | -6+x=2x | | 4x²−36=64. | | (5x-23)=(7x-1)) | | 135=-u+223 | | (6h+2)-(3h+2)=15 | | 2.72=3.r | | 2b-3=61 | | 6x-5-7x=12 | | X-1+5x-15+4=6x-12 | | 2^(x-5)=9 | | -v+6=194 | | 3=x-4.4 | | 8^2x=8^2x-3 | | m0.50=45 | | u-11=49 | | 8(y+5)=2y+4 | | 263-u=62 | | –6(3x=–2)+28 | | 50+5z=100 | | 0.17x=34 | | 2(12-x)=-2(x-) | | -2x=5x-19 | | 4n+5n+3=21 | | 3x-x=172 | | X+(2x+11)=89 | | 5=1.6x=1 |