If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5x^2+36x+24=0
a = 5; b = 36; c = +24;
Δ = b2-4ac
Δ = 362-4·5·24
Δ = 816
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{816}=\sqrt{16*51}=\sqrt{16}*\sqrt{51}=4\sqrt{51}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(36)-4\sqrt{51}}{2*5}=\frac{-36-4\sqrt{51}}{10} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(36)+4\sqrt{51}}{2*5}=\frac{-36+4\sqrt{51}}{10} $
| 4=5(l-2) | | 3+3(p-3)=24 | | 4^2x+3=32 | | 42x+3=32 | | -65-4b=6b-1@ | | 12t^2-56t+65=0 | | 7x–2=5x+18 | | 3/4(x-4)=x-3 | | x/3+3/2=2x/5-1 | | 6x-2x=3x+47 | | 6x(5-7)=7(x+3) | | 2x-3x-4/7=4x-27/3-3 | | -m+(3m-6m)=8-14 | | 0.25x+0.1x=0.4x-5 | | 6a-12=4a+ | | (x+1)/2+4=17 | | 8(2x-5)-6(3x-77=1 | | 10(y–4)–2(y–9)–5(y+4)=0 | | 6x-2x=124 | | (3x+2)(5x-6)=0 | | 0=(x/2+170)^2 | | 7x-200=x-2 | | 1.2x+x=14+1 | | 2(3x-8)=10(3x-8) | | 3(3x-7)=6(3x-4) | | 3a+8=9a=16 | | 3p-5=4p+9 | | 3(x+2)-2(x=1)=7 | | 8(6x-4)=7(5x-7) | | 10t-6=0 | | 2y-1/2=1/3 | | 3x+4x=9.5 |