If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5x^2+32x-81=0
a = 5; b = 32; c = -81;
Δ = b2-4ac
Δ = 322-4·5·(-81)
Δ = 2644
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2644}=\sqrt{4*661}=\sqrt{4}*\sqrt{661}=2\sqrt{661}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(32)-2\sqrt{661}}{2*5}=\frac{-32-2\sqrt{661}}{10} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(32)+2\sqrt{661}}{2*5}=\frac{-32+2\sqrt{661}}{10} $
| (x+1)(x^2+5x)=0 | | 9×-y=45 | | 3-1/2x=12 | | 0=3x-1/x+1 | | (56x^2-16x-31)^1/2=0 | | x^2+22x−88=0 | | 4+3n=1 | | (112x-24)/2(56x^2-16x-31)^1/2=0 | | (x+8)/9=20 | | 3/2=(9/10)k | | x÷3+x÷18=3÷2 | | 3+(8-2x)*6=91 | | 3(n+3)=33 | | x+8/9=20 | | G(x+3)=4x+2 | | -5(-2+x)=30 | | 2(x-7)+2x=18 | | G(x+4)=3x+1 | | -1-2n=-7 | | 6(8-12y)=4y | | -4(1+x)=-8 | | x/3=3/5 | | x/3+x/18=3/2 | | 3x+12+16x+17=-7+211 | | -4b+5=45 | | (2x-8/10)-(22-x/3)=2 | | 5/2+x=1/3 | | X2+y=18 | | 3(-2+a)=6 | | |3x-9/6|=3 | | 3n-4=40 | | -2-3k=4 |