If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5x^2+24x-5=0
a = 5; b = 24; c = -5;
Δ = b2-4ac
Δ = 242-4·5·(-5)
Δ = 676
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{676}=26$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(24)-26}{2*5}=\frac{-50}{10} =-5 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(24)+26}{2*5}=\frac{2}{10} =1/5 $
| 1/3x-6=6 | | x+1/2x-1=3/4 | | 20-2d=6 | | 0.06=2^-x | | 6x²10=4x | | 45/2x=10x | | 7.4x+19=115.2 | | 2x+x+2+4x+1x+2=4x+2x3x+2 | | 6x²(10)=4× | | 10(m+2)=6(m+4 | | 9.9x-17=131.5 | | 5.4(x+6)=86.4 | | 24+14x=12-92 | | 5y4-5y2=0 | | 16w=144 | | 2(-2x-16)=-36 | | 3x2-6x+75=0 | | 5(n-4)/3=8+n/2 | | 2^2x2=9.2^x-2 | | 3x^2-5=2x^2+x+15 | | -3x+13=-38 | | 1+2x/3=1+x/4 | | 10x+15x=6x+3 | | -5h-13=0 | | 4g+6=2g-4 | | 8(5p-5)=200 | | 5x-23=14 | | 2x+32+2x=36 | | 4(2.7^x)-5=35 | | 8=8g | | -14x-3=-171 | | E^x+7=19 |