If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5x^2+15x-50=0
a = 5; b = 15; c = -50;
Δ = b2-4ac
Δ = 152-4·5·(-50)
Δ = 1225
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1225}=35$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(15)-35}{2*5}=\frac{-50}{10} =-5 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(15)+35}{2*5}=\frac{20}{10} =2 $
| 3x2+41x–14=0 | | 2/10=4/n=5 | | 5+x=3{x-7}+6 | | x+16=2x+0.75 | | -50+20x=85 | | 33+3n=105 | | f÷−3/2 =−3/1 | | 9x+5(x-3)=10 | | x/3-2=-6/5 | | 7+3=5x-3x | | 12x-x-160=148 | | 4x-3=6+3 | | (4x+25)=(6x-5) | | -5+8x=25+2x | | 69+61+9x-4=180 | | -4=-3+1/4(8x-4) | | 7x-26=5-3x | | -4(-8v+1)-9v=5(v-2)-3 | | 3+3n=105 | | x-10+7x=5(x+3) | | –72=–4v–4v | | 5/2x+1/2x=28/54+7/2x | | 4x14=-10 | | -4+7d=13=33 | | X+x+2x+2x+4=38 | | 4(x-5)(x+2)=0 | | 2n+10=1-7n | | 8d=9d+3 | | 2a+3a-15=6a-8 | | 0.25(5x+8)=0.5(2x-3) | | 5^(2x+3)=3^(x-1) | | 2-x=-2x-3 |