If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5x^2+11x=0
a = 5; b = 11; c = 0;
Δ = b2-4ac
Δ = 112-4·5·0
Δ = 121
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{121}=11$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(11)-11}{2*5}=\frac{-22}{10} =-2+1/5 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(11)+11}{2*5}=\frac{0}{10} =0 $
| x+(x*0.75)=16 | | -23=1/5h+5 | | 2(x+5)=24+9x | | 1400=100x | | 2x+5=9x−44 | | (x+4)(x+8)=221 | | -3u+15u+7u=8u+43 | | 13-6x=6x=1 | | 5x2−26x=−5 | | 3(x-3)^3=375 | | 4÷x-4=8÷3x-19 | | (2x+10)(2x-10)=90 | | 2*x+x*√2=90 | | 4x^2-49x+16=0 | | 2p-1=2+ | | u-20=40 | | -8d=16 | | 18-5=-3(x-2) | | 2X=5y=50 | | |2x+5|=|7-2x| | | 0=148t-16t^2 | | 6x+2=(3x+4) | | 4(9y–5)=10(3y+17)–4 | | 2a+4=44 | | y^2-62y+336=0 | | Y2-62y+336=0 | | Z-9/5-z=-5/9 | | (1+x)^5=0.12 | | 8=9w-7w | | 8x+7-12=6x+5 | | 4/5x+3=2/5 | | (X+8)*2=5x-11 |