If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5x^2+10x-45=0
a = 5; b = 10; c = -45;
Δ = b2-4ac
Δ = 102-4·5·(-45)
Δ = 1000
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1000}=\sqrt{100*10}=\sqrt{100}*\sqrt{10}=10\sqrt{10}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(10)-10\sqrt{10}}{2*5}=\frac{-10-10\sqrt{10}}{10} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(10)+10\sqrt{10}}{2*5}=\frac{-10+10\sqrt{10}}{10} $
| 9y2–3y–6=0 | | 4x/2x+7=3 | | (2/3x)+(1/2)=(4/x)+(4/3) | | 10-9n=19 | | −9x^2+36x+171=0 | | -17-10=2x+36 | | y=360*1.07^10 | | x+(1/x)=2.25 | | (-4x/(((x^2)+16)^2))=0 | | -4x/(((x^2)+16)^2)=0 | | 8x+9x-25=125-8x | | x+18-3x=-23 | | 3x+1=7×+9 | | (x)/7/x/35/125= | | 7.2(x-4.25)=28.8 | | 21x=33/21 | | 7/11x=5 | | 6x+4+12x+15=100 | | 5x−13+2x−16=90 | | 6x+4+12+15=100 | | 5x−13+2x−16=180 | | 6x+42x+15=100 | | 4x+20=X-15 | | 3+2x+17=4x-10 | | 4w+20=30 | | 10d+5+2d=15 | | (9-z)(5z+1)=0 | | 2(2x+2)=4x+4 | | 2/7(4m-18)=-2 | | 2a=7(a)+8 | | x^2+x=1122 | | -27=d/3 |