5x-90+x+30+1/6x+55=180

Simple and best practice solution for 5x-90+x+30+1/6x+55=180 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 5x-90+x+30+1/6x+55=180 equation:



5x-90+x+30+1/6x+55=180
We move all terms to the left:
5x-90+x+30+1/6x+55-(180)=0
Domain of the equation: 6x!=0
x!=0/6
x!=0
x∈R
We add all the numbers together, and all the variables
6x+1/6x-185=0
We multiply all the terms by the denominator
6x*6x-185*6x+1=0
Wy multiply elements
36x^2-1110x+1=0
a = 36; b = -1110; c = +1;
Δ = b2-4ac
Δ = -11102-4·36·1
Δ = 1231956
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{1231956}=\sqrt{36*34221}=\sqrt{36}*\sqrt{34221}=6\sqrt{34221}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-1110)-6\sqrt{34221}}{2*36}=\frac{1110-6\sqrt{34221}}{72} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-1110)+6\sqrt{34221}}{2*36}=\frac{1110+6\sqrt{34221}}{72} $

See similar equations:

| 3x-5(x-2)=-4+2x+2 | | 180=4x=11 | | -1+4x=9 | | 2(-7a+6)=-167a | | 5y-1,y=3 | | 37/6x=180 | | 9c+15=60 | | 6+8(x+2)=4(x-1) | | 4x-17=-2(x+5)+7x | | 16p−11p=15 | | y=218(8)+520 | | 2x-6=2+(2x+1) | | f(8)=10(1+1.5)^8 | | v-(-9)=20 | | 14-3x=2x+8 | | 100=120+x^2-200+11x | | -4q+-15=-14 | | y=10(1+1.5)^8 | | 3x-30=-12 | | -1n+12=8 | | -1n+12=( | | 3/4+1/2+f=11/2 | | 40(b−1)+5=5(8b−7) | | n+(-5)=-8 | | -2f+4=2 | | 1/21x-5/7=2/3 | | 6h-1=25h=4 | | 2(y-9)=-2y+6 | | 328=(m=5) | | (7x+3)-(2x-5)=78 | | 6(x-4)+8-2x=7 | | 328m=5 |

Equations solver categories