5x-4(x-3)=x(-x-7)

Simple and best practice solution for 5x-4(x-3)=x(-x-7) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 5x-4(x-3)=x(-x-7) equation:



5x-4(x-3)=x(-x-7)
We move all terms to the left:
5x-4(x-3)-(x(-x-7))=0
We add all the numbers together, and all the variables
5x-4(x-3)-(x(-1x-7))=0
We multiply parentheses
5x-4x-(x(-1x-7))+12=0
We calculate terms in parentheses: -(x(-1x-7)), so:
x(-1x-7)
We multiply parentheses
-1x^2-7x
Back to the equation:
-(-1x^2-7x)
We add all the numbers together, and all the variables
-(-1x^2-7x)+x+12=0
We get rid of parentheses
1x^2+7x+x+12=0
We add all the numbers together, and all the variables
x^2+8x+12=0
a = 1; b = 8; c = +12;
Δ = b2-4ac
Δ = 82-4·1·12
Δ = 16
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{16}=4$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(8)-4}{2*1}=\frac{-12}{2} =-6 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(8)+4}{2*1}=\frac{-4}{2} =-2 $

See similar equations:

| -5r-6-2r=6-7r | | 4x-20=3x+50 | | 3(x-2)+2x=4(2x+3);X= | | 8(x-3)-4(x+2)=-16 | | 104=7x+2 | | -7-b=-3(6+4b) | | (4n+1)=121 | | 14+h=112 | | 17k+14=-20 | | b.5+16−20=20 | | 2(-5)=48-4(2x+1) | | 2c+3c=3c-4 | | -7u+5(u-4)=-6 | | 1+68=4x-16 | | 4(8n-5)=-9+32n | | 2c+3c=3c+4 | | 113=7x+2 | | -4x-6=-2=8 | | x^2-3x=150 | | (6v+6)=(7v-6) | | 8a–(4a+32)=16 | | 2/3(12c-4)=15c+15 | | 1113=7x+2 | | 3+1.50=30x | | 23+n=-16 | | 6(8-4m)=24m+48 | | y-30=14-3y | | 0.25×4+1y=12 | | 14x-10x=4 | | -42k+12=12-5k | | 2.5+y=32 | | 5x–(4x–1)=-12 |

Equations solver categories