5x-2x(x-5)=-7+5x+11

Simple and best practice solution for 5x-2x(x-5)=-7+5x+11 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 5x-2x(x-5)=-7+5x+11 equation:



5x-2x(x-5)=-7+5x+11
We move all terms to the left:
5x-2x(x-5)-(-7+5x+11)=0
We add all the numbers together, and all the variables
5x-2x(x-5)-(5x+4)=0
We multiply parentheses
-2x^2+5x+10x-(5x+4)=0
We get rid of parentheses
-2x^2+5x+10x-5x-4=0
We add all the numbers together, and all the variables
-2x^2+10x-4=0
a = -2; b = 10; c = -4;
Δ = b2-4ac
Δ = 102-4·(-2)·(-4)
Δ = 68
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{68}=\sqrt{4*17}=\sqrt{4}*\sqrt{17}=2\sqrt{17}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(10)-2\sqrt{17}}{2*-2}=\frac{-10-2\sqrt{17}}{-4} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(10)+2\sqrt{17}}{2*-2}=\frac{-10+2\sqrt{17}}{-4} $

See similar equations:

| -2.8+(b-1.7)=-0.6•9.4 | | 3(6+5y)=2(-5y+4y) | | 63+81+x=180 | | 9a+11=52 | | 3(6+5y)=2(-5+y) | | 92=8c-4 | | 16=4/9u | | ✓x+2=5 | | x(64-x)=252 | | -3/5=1/2v-4/7 | | 5x=2x=18 | | ((x*x*x*x)/4)-(((-1)^4)/4)=0 | | 4-7/9x=1/2 | | -42=-6/7y | | -27=y/3+-20 | | x+13=2x-17 | | 5(2x+6)=100 | | 4p^2-5p-8=0 | | (x*x*x*x)/4-((-1)^4/4)=0 | | 9x-17=6x+7 | | 3x=14(3x-11) | | X+4/3=3/4(x-4) | | 8(x-5)=4x-28 | | (t+1)4+(t+5)4=82 | | 0.25(x+15)=2x-26 | | 4x-0,5*x^2-(3,5)=0 | | 4(v-7)=6v-36 | | 11x-4=x+11 | | Y=0.025x+275 | | 2(x+4)+3=5x-3x+11 | | -8=d/3-12 | | 0.4•x=24 |

Equations solver categories