If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5x-(x+4)=10-2(x-8)5x-x-4=10-2x+164x-4
We move all terms to the left:
5x-(x+4)-(10-2(x-8)5x-x-4)=0
We get rid of parentheses
5x-x-(10-2(x-8)5x-x-4)-4=0
We calculate terms in parentheses: -(10-2(x-8)5x-x-4), so:We add all the numbers together, and all the variables
10-2(x-8)5x-x-4
determiningTheFunctionDomain -2(x-8)5x-x+10-4
We add all the numbers together, and all the variables
-1x-2(x-8)5x+6
We multiply parentheses
-10x^2-1x+80x+6
We add all the numbers together, and all the variables
-10x^2+79x+6
Back to the equation:
-(-10x^2+79x+6)
-(-10x^2+79x+6)+4x-4=0
We get rid of parentheses
10x^2-79x+4x-6-4=0
We add all the numbers together, and all the variables
10x^2-75x-10=0
a = 10; b = -75; c = -10;
Δ = b2-4ac
Δ = -752-4·10·(-10)
Δ = 6025
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{6025}=\sqrt{25*241}=\sqrt{25}*\sqrt{241}=5\sqrt{241}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-75)-5\sqrt{241}}{2*10}=\frac{75-5\sqrt{241}}{20} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-75)+5\sqrt{241}}{2*10}=\frac{75+5\sqrt{241}}{20} $
| 5m-3=4(m+1) | | 2x+6=5x+9/2 | | 8(t−85)=40 | | -5x+-35=40 | | 5/12n+1/2n+½= | | 22+6q=76 | | 9x-2x6x=58 | | 5x+9=2(3x-1) | | 8(u+2)=56 | | 4(y-6)-6y=48 | | 1.5n=127.4 | | 0.05x+0.25x=0.2 | | 15x+5+-1+27=130 | | q3+ 9=12 | | y=-5y+18 | | 2x3+10x2−28x=0 | | 5x/2+3=3x/2+5 | | -12-a=4a | | 1/10(x+66)=-2(10-x) | | 7m+46=102 | | 7x+15=13x+5 | | 3x^2+2x=-18 | | h(4)=3×4+7 | | -17x+7=-28 | | -4x+16=x+61 | | h(4)=3•4+7 | | -4(3x+5)=-3 | | 2x^2-10x-8+5x=2x^2-5x-8 | | 300+12x1=750 | | -8x–1=63 | | 2r–7=-12 | | 5x^2-2=34 |