5x+6x(x-9)=5(x-6)

Simple and best practice solution for 5x+6x(x-9)=5(x-6) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 5x+6x(x-9)=5(x-6) equation:



5x+6x(x-9)=5(x-6)
We move all terms to the left:
5x+6x(x-9)-(5(x-6))=0
We multiply parentheses
6x^2+5x-54x-(5(x-6))=0
We calculate terms in parentheses: -(5(x-6)), so:
5(x-6)
We multiply parentheses
5x-30
Back to the equation:
-(5x-30)
We add all the numbers together, and all the variables
6x^2-49x-(5x-30)=0
We get rid of parentheses
6x^2-49x-5x+30=0
We add all the numbers together, and all the variables
6x^2-54x+30=0
a = 6; b = -54; c = +30;
Δ = b2-4ac
Δ = -542-4·6·30
Δ = 2196
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{2196}=\sqrt{36*61}=\sqrt{36}*\sqrt{61}=6\sqrt{61}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-54)-6\sqrt{61}}{2*6}=\frac{54-6\sqrt{61}}{12} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-54)+6\sqrt{61}}{2*6}=\frac{54+6\sqrt{61}}{12} $

See similar equations:

| 4b^2=17b-4 | | 34=-10-4m | | -272=-17b | | 39=-3(x-4) | | N=5m+9 | | 8x-19=4x+7 | | 3x+17+7x-15=10x-2 | | 25w-20=20w-100 | | t+64=9t | | 105=10x+5 | | 10x+14=3(3x+6) | | 3x-2=12x+4 | | 451.44=180+1.04x | | 4-x10=12 | | 7x-2x+8=x-3+11 | | 8p-9=7p-7 | | x-7+x+2x=81 | | -38+11x=15x+58 | | 5+3(5r-4)=-58 | | 2x/3=-16 | | -1x+7=-2 | | x3+2x=58 | | 12x-9x-3x=-9 | | -37-4x=-9x+68 | | 5(2x)-150=100 | | (4/9)f+2=-5 | | 204=x+153 | | 8-y-2/2=16 | | 2x+4/2=-16 | | 7b=3b-8 | | 7t=-3+8t | | F(5)=7x+1 |

Equations solver categories