5x+43=(x-1)(5x+6)

Simple and best practice solution for 5x+43=(x-1)(5x+6) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 5x+43=(x-1)(5x+6) equation:



5x+43=(x-1)(5x+6)
We move all terms to the left:
5x+43-((x-1)(5x+6))=0
We multiply parentheses ..
-((+5x^2+6x-5x-6))+5x+43=0
We calculate terms in parentheses: -((+5x^2+6x-5x-6)), so:
(+5x^2+6x-5x-6)
We get rid of parentheses
5x^2+6x-5x-6
We add all the numbers together, and all the variables
5x^2+x-6
Back to the equation:
-(5x^2+x-6)
We add all the numbers together, and all the variables
5x-(5x^2+x-6)+43=0
We get rid of parentheses
-5x^2+5x-x+6+43=0
We add all the numbers together, and all the variables
-5x^2+4x+49=0
a = -5; b = 4; c = +49;
Δ = b2-4ac
Δ = 42-4·(-5)·49
Δ = 996
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{996}=\sqrt{4*249}=\sqrt{4}*\sqrt{249}=2\sqrt{249}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-2\sqrt{249}}{2*-5}=\frac{-4-2\sqrt{249}}{-10} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+2\sqrt{249}}{2*-5}=\frac{-4+2\sqrt{249}}{-10} $

See similar equations:

| 5x+-7=49 | | 3/2p=4/6 | | 31-15=4(x-5) | | 3(1+8x)=171 | | 7x+8+33=180 | | -8-n+4(1+5n)=-6n-14 | | -6p-7=-5p | | 39856+1025x=2350 | | x(10-2x)(14-2x)=120.2 | | 334=2m+84⋅3+20 | | 6x=249 | | 1/3(6x+3)=2x+6x-11 | | 5r-8(2r-7)=-9 | | 3q-(-6)=48 | | 6+8x=2+7x | | .5x-7=2x-5 | | 0.5(4x+10)=2x+8 | | 3c+5+54=180 | | -3w=-4w-9 | | 5x+3(x-40)=60 | | 10x+4x+24=80 | | 3x+6-4x=14-2x | | -28=2(3m+4)-5(1-5m) | | X+5=x+13 | | j/10=8- | | 180=63+52+5x | | 5x+3(x-40=60 | | -392=7(-8x-8) | | 10k=-4+10k | | -6+10=-10-4c | | 3q−–6=48 | | y=35,000(1.024)^4 |

Equations solver categories