5x+3=125/25x

Simple and best practice solution for 5x+3=125/25x equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 5x+3=125/25x equation:



5x+3=125/25x
We move all terms to the left:
5x+3-(125/25x)=0
Domain of the equation: 25x)!=0
x!=0/1
x!=0
x∈R
We add all the numbers together, and all the variables
5x-(+125/25x)+3=0
We get rid of parentheses
5x-125/25x+3=0
We multiply all the terms by the denominator
5x*25x+3*25x-125=0
Wy multiply elements
125x^2+75x-125=0
a = 125; b = 75; c = -125;
Δ = b2-4ac
Δ = 752-4·125·(-125)
Δ = 68125
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{68125}=\sqrt{625*109}=\sqrt{625}*\sqrt{109}=25\sqrt{109}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(75)-25\sqrt{109}}{2*125}=\frac{-75-25\sqrt{109}}{250} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(75)+25\sqrt{109}}{2*125}=\frac{-75+25\sqrt{109}}{250} $

See similar equations:

| 4/5^2x=5/4^4+3x | | 5x-3=125/x | | X-5-2y=0 | | 8m=2m2 | | 7c−3c=20 | | Y=x2+3x-4 | | 4(5x-2)=2((9x+3) | | 9x=x^2-10 | | e^2=3 | | 0=-4.9x^2+48x+160 | | 2k-23=3 | | 2/y+2=10/3 | | 2k−23=3 | | 96=4(d+8) | | 5-2×=8x | | 5(k/3+2)=32/3 | | 5(k/3+2=32/3 | | 8-3(2x-4)=-10 | | 1/5x-3=18-1/2x | | (x+2)(x+3)(x+8)(x+12)=-2x^2 | | 9-z+3-2z=0 | | -2x+3(-6x-14)=198 | | 12-1z-2=0 | | 3x+17=x-21 | | -8d-5d+7d=48 | | x-21=3x+17 | | 2/9i+2/3=2/5 | | 7+2(y+1)=9+2y | | (8x+26)÷5=0 | | 2/9(i+2/3)=2/5 | | 2x(.6)=32.3 | | 12x^2-88x+40=0 |

Equations solver categories