5x*3x+5x*3x+305x*3x+30=360

Simple and best practice solution for 5x*3x+5x*3x+305x*3x+30=360 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 5x*3x+5x*3x+305x*3x+30=360 equation:



5x*3x+5x*3x+305x*3x+30=360
We move all terms to the left:
5x*3x+5x*3x+305x*3x+30-(360)=0
We add all the numbers together, and all the variables
5x*3x+5x*3x+305x*3x-330=0
Wy multiply elements
15x^2+15x^2+915x^2-330=0
We add all the numbers together, and all the variables
945x^2-330=0
a = 945; b = 0; c = -330;
Δ = b2-4ac
Δ = 02-4·945·(-330)
Δ = 1247400
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{1247400}=\sqrt{8100*154}=\sqrt{8100}*\sqrt{154}=90\sqrt{154}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-90\sqrt{154}}{2*945}=\frac{0-90\sqrt{154}}{1890} =-\frac{90\sqrt{154}}{1890} =-\frac{\sqrt{154}}{21} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+90\sqrt{154}}{2*945}=\frac{0+90\sqrt{154}}{1890} =\frac{90\sqrt{154}}{1890} =\frac{\sqrt{154}}{21} $

See similar equations:

| 2x+6=80° | | 4x+1=3x+14 | | -(x+2)=4(x+2) | | 5=6x4 | | 8p+148p=-15 | | 3x-12+4x-25=180 | | x+38+52+x+73+x+8=360 | | 400x3.14=x | | /5.5=d+0.25 | | 20x−3 15=-8 | | 5(x-2)=4x+2 | | 5.7m=30.78 | | 5x*3x+30=360 | | 10y-3=10+4 | | 0.10=x+50 | | 0=-16x^2=144 | | 4x+-5=7+2x | | 2x+30+6x-12=90 | | 12n2=4 | | 0.5x+20=25 | | 14x-17+5x+x+95+3x+52=360 | | 3.6c=8.28 | | 2(4t+8)=56 | | 3x+25+5x-7=90 | | 80+3x-26+4x-72=360 | | 12x-15×2=20+2x | | 248/96=31/z | | x/8+10=12 | | 2x-100=200/2 | | 153/77=19/y | | 5x+64+67+73+17x+90=360 | | 10-4y=-9 |

Equations solver categories