5x(x-3)-(2x+1)=4(3x+2)

Simple and best practice solution for 5x(x-3)-(2x+1)=4(3x+2) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 5x(x-3)-(2x+1)=4(3x+2) equation:



5x(x-3)-(2x+1)=4(3x+2)
We move all terms to the left:
5x(x-3)-(2x+1)-(4(3x+2))=0
We multiply parentheses
5x^2-15x-(2x+1)-(4(3x+2))=0
We get rid of parentheses
5x^2-15x-2x-(4(3x+2))-1=0
We calculate terms in parentheses: -(4(3x+2)), so:
4(3x+2)
We multiply parentheses
12x+8
Back to the equation:
-(12x+8)
We add all the numbers together, and all the variables
5x^2-17x-(12x+8)-1=0
We get rid of parentheses
5x^2-17x-12x-8-1=0
We add all the numbers together, and all the variables
5x^2-29x-9=0
a = 5; b = -29; c = -9;
Δ = b2-4ac
Δ = -292-4·5·(-9)
Δ = 1021
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-29)-\sqrt{1021}}{2*5}=\frac{29-\sqrt{1021}}{10} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-29)+\sqrt{1021}}{2*5}=\frac{29+\sqrt{1021}}{10} $

See similar equations:

| -3z-9-5z=-3z-4 | | 3x+2x+10=20x+35 | | -3x+4=54 | | (1-3)+2x=180 | | 26.661538461538+x=100 | | -5z=2+5 | | a-4-5=8 | | 2x-3(3+4x)=1 | | -1-6+2z=-5-6 | | 75=30•q | | 7=-5.6*1.5+x | | 2(x+3)+3(x+8)=0 | | 3-5b-1-3=-10-3 | | (64.651+62.7+63.78)+y=270y= | | 5x-(-(3/4)x-6)=-23 | | 3d^2-11d=0 | | 2(x-3)=5-7x | | x-3-5=9 | | 6r+5=35 | | 9-m=1-2m+1 | | 25+5a=-5(a-4) | | 3x+x+.33x=28 | | 2+2(-3x+4)=28 | | 2916=x^2(x×0.5) | | 3m+9/m=6 | | 4r+18=38 | | 10r+6=56 | | 11/12d+25=47 | | b=-3+0.72/0.8 | | x+4=3​ | | -2x+(2x-1)=-1 | | 8x-63=73 |

Equations solver categories