5x(x+6)+6=-2(x-8)

Simple and best practice solution for 5x(x+6)+6=-2(x-8) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 5x(x+6)+6=-2(x-8) equation:



5x(x+6)+6=-2(x-8)
We move all terms to the left:
5x(x+6)+6-(-2(x-8))=0
We multiply parentheses
5x^2+30x-(-2(x-8))+6=0
We calculate terms in parentheses: -(-2(x-8)), so:
-2(x-8)
We multiply parentheses
-2x+16
Back to the equation:
-(-2x+16)
We get rid of parentheses
5x^2+30x+2x-16+6=0
We add all the numbers together, and all the variables
5x^2+32x-10=0
a = 5; b = 32; c = -10;
Δ = b2-4ac
Δ = 322-4·5·(-10)
Δ = 1224
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{1224}=\sqrt{36*34}=\sqrt{36}*\sqrt{34}=6\sqrt{34}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(32)-6\sqrt{34}}{2*5}=\frac{-32-6\sqrt{34}}{10} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(32)+6\sqrt{34}}{2*5}=\frac{-32+6\sqrt{34}}{10} $

See similar equations:

| (x-4)/3=33 | | 252x+3=625 | | 7=‐t | | 8(x+7)+7=8x+8 | | -2(5y-1)-1=-4(y-3) | | -24-m=3/4 | | 23t=35 | | 16x-72=8x-64+5 | | (u/15)+6=2 | | -3(2x+4)=4(x+2) | | 0.2+0.6=0.9x-4.3 | | 31=2(u+2)-5u | | 7(x+4)-9=2x+5(4+x) | | 3(x+2)-9=5x-2(1+x) | | (5-y)+(6-2y)-(5-y)=-34 | | 3x-5x-7=-2x+4-7 | | 8x+5+3x-3=90 | | 3a-4a/7=1-(2a-1)/3 | | −6(m−4)+3m=−3(−3m−8) | | 5/7(y-3)-13/7=-4 | | 2(x-3)-3(x-2)=x+2(x-6) | | |6x+6|=|3x−3| | | 2x+52=1/2 | | 1/5x-12=-8+56/5 | | -7+8x=-4 | | 3x+16.9=–(11x–29.5) | | 8b-1=6b-15 | | |r-9|=16 | | 6w-9=27 | | 36-17b=b | | Y=6x²-12x+5 | | -10z=-20z+2.1= |

Equations solver categories