If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5x(7x-5)=0
We multiply parentheses
35x^2-25x=0
a = 35; b = -25; c = 0;
Δ = b2-4ac
Δ = -252-4·35·0
Δ = 625
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{625}=25$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-25)-25}{2*35}=\frac{0}{70} =0 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-25)+25}{2*35}=\frac{50}{70} =5/7 $
| 3(4w+4)=-35 | | 9=63/r | | h/3-5=74 | | 3y+7=26 | | (3/4t^2)-(150/18t)=200 | | (2x+33)=(5x-6) | | 2y^2-y-7=0 | | 3/4t^2-150/18t=200 | | x(17x+8)=240 | | 264+26(2)=n | | 7c-12=30 | | -7/9(x+3)=14 | | (x^2-4x+9)^2-8(x^2-4x+9)+15=0 | | 5x−3=7+5 | | 5.9a+14=84.8 | | -8/3=-4/5w-7/3 | | 4x-8=-2x+12+5x | | 5x−3=7+3x | | 7(4s+1)=343 | | 8(x+12=56 | | (12x+1)=(14x-5) | | (x^2)-6x=10 | | 4x+7-x=15+3x | | (12x+1)+(14x-5)=180 | | -3t-8+7t=34t | | 9(u-7)=27 | | 4x+7-x=15x+3x | | (7x-3)=6x | | -6n-2(2n-3)=14 | | (3x-2)(x+2)=35 | | 4(q-8)=20 | | x+3x=2-8 |