If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5x(2x+4)-6(x+2)=0
We multiply parentheses
10x^2+20x-6x-12=0
We add all the numbers together, and all the variables
10x^2+14x-12=0
a = 10; b = 14; c = -12;
Δ = b2-4ac
Δ = 142-4·10·(-12)
Δ = 676
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{676}=26$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(14)-26}{2*10}=\frac{-40}{20} =-2 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(14)+26}{2*10}=\frac{12}{20} =3/5 $
| x+1/2x-1/3x=14 | | 4x²-2-(9x²-3x+4)=0 | | y/18=-6 | | -t/3=5 | | 3(7x-5)-(2x+4)*2=0 | | 0.0617=((23.98)(1-x)(3-3x)^(3)(7.37*10^(-2)))/(1+(428.23)(3-3x)^(3)(1+(1*10^(-6))(0.08)(1-x))+(1)/(236.576x)) | | x-2x3=21 | | 19-x/4=16 | | 7x+3-6x=-5+22 | | 6x-48=6x-10 | | 4(x-2)+3=1-3(2-x) | | n-19=12 | | x-4(x-2)+3=1-3(2-x) | | -2y^2+4y+(y-6)^2=43 | | (y-6)^2=2y^2-4y+43 | | 3(t-5)=25 | | x+(x+2)+2(x+2)=58 | | 2m^-m-3=0 | | 2x/3+11=25 | | 4x-2x-5=3+6x+4 | | 3|7-3/2x|+11=35 | | 4y-(6-90y)=3-5y | | 4(x+5)=+41 | | (3x-7)=-9x+21 | | (x+4)*5=30 | | 6x+6=-47-3x | | 5p+2.5=8p-2 | | 5p+2.5=8p-1.25 | | -28=v/5+7 | | -5x-2=4x+20 | | 3n=16+n | | ¾b+1=8 |