5x(2-x)+7-10x=6

Simple and best practice solution for 5x(2-x)+7-10x=6 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 5x(2-x)+7-10x=6 equation:



5x(2-x)+7-10x=6
We move all terms to the left:
5x(2-x)+7-10x-(6)=0
We add all the numbers together, and all the variables
5x(-1x+2)-10x+7-6=0
We add all the numbers together, and all the variables
-10x+5x(-1x+2)+1=0
We multiply parentheses
-5x^2-10x+10x+1=0
We add all the numbers together, and all the variables
-5x^2+1=0
a = -5; b = 0; c = +1;
Δ = b2-4ac
Δ = 02-4·(-5)·1
Δ = 20
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{20}=\sqrt{4*5}=\sqrt{4}*\sqrt{5}=2\sqrt{5}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{5}}{2*-5}=\frac{0-2\sqrt{5}}{-10} =-\frac{2\sqrt{5}}{-10} =-\frac{\sqrt{5}}{-5} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{5}}{2*-5}=\frac{0+2\sqrt{5}}{-10} =\frac{2\sqrt{5}}{-10} =\frac{\sqrt{5}}{-5} $

See similar equations:

| 9^6x+5=45 | | 192=4x-6(3x-4) | | -4.9t^2+27t=0 | | 0.6t=8 | | 2x-4(-6x+8)=228 | | -102=-6x+7(x-13) | | 7x+2(-3x+9)=28 | | m/14=10 | | 4t−5=7 | | 15−3m=9 | | 4u+12=20 | | 16−2s=4 | | 2x+(x-4)/4=10 | | -4t-2=10 | | 500+1/6x=300 | | 8+c/6=-6 | | a-17=-20 | | 85+n/4=61 | | 5r+6=27 | | 12y=(8×-48)÷3 | | 209=k/41.71 | | z/2+5=-49 | | -8x+3(x-2)=-26 | | z/8+2=75 | | 209=69.67/x | | 209=k/3 | | k/6+8=19 | | (x+4)/3+x=5x | | 4(-6x-5)=-44 | | 10c=13.17 | | -6a-15=-3(a-) | | z+108=180 |

Equations solver categories