If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5w^2-2w=0
a = 5; b = -2; c = 0;
Δ = b2-4ac
Δ = -22-4·5·0
Δ = 4
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{4}=2$$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-2)-2}{2*5}=\frac{0}{10} =0 $$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-2)+2}{2*5}=\frac{4}{10} =2/5 $
| 40=(8x+7)+(9x+7) | | 3y+4=-1y+-3 | | 5g+3.64=25.19 | | 3y+4=-1+-3 | | 2x+4=4x−8 | | -5(4n-5)=105 | | -z–76=3 | | 4f+4(2f+2)=44 | | 78=8+10c | | 3m+2m+m=55 | | 12z-6+15z=27-5 | | 2.5/3.5=2/d | | 5x=13+9x-23 | | 4=8s+28 | | -6v+3(v+5)=-9 | | -3u^2+20u+63=0 | | 1x+5=0x+7 | | -7(4+3m)=-6m+2 | | 145-3.5x=125-3x | | 4z−2=10 | | 20p+4-2p=4+18p | | 2d+36=5d | | 6(5n-7)=258 | | (t/2)+1=5 | | y/4+y/5=4/5 | | 1/7x-4=-4x+2/7x+5 | | 10=p/3+9 | | 7=15-2j | | 2/3x-15=25 | | 5y+3=7y-31 | | 10=p3+ 9 | | 10h=3 |