If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5w^2-15w=0
a = 5; b = -15; c = 0;
Δ = b2-4ac
Δ = -152-4·5·0
Δ = 225
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{225}=15$$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-15)-15}{2*5}=\frac{0}{10} =0 $$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-15)+15}{2*5}=\frac{30}{10} =3 $
| -2+6d=-8d-10+10d | | 0.02x+0.7=0.8-0.03 | | 0=-16t2+64t | | 8x-18=10x-12 | | 55,000+2,500x=62,000+200 | | 20-17r=-19r | | (3x+8)=(2x+7) | | 1-4y=31 | | -1+3z=4z-10 | | 6+9k=5k-10+2k | | (1/8)5x=32×+8 | | 8z+6=6z | | 2d+7=-2-7d | | 2n-22=-4(1-2n) | | 2/10(x-1)=35 | | -6(3x+2)-7(6x-3)=-51 | | -x^2+2-3=0 | | 10b=9b+9 | | 12x-(9x-8)=26 | | -98=-7(r+6) | | -7u=-8u+2 | | -9d+10=-8d | | -8n-6n+2n=-20 | | E^4*x=24 | | 10(3k+1)=2(9k=11) | | 8/7t=-7/8 | | x^2+9x+374=0 | | 6/5(x-2)=24 | | 0.0125x=0.04x-120 | | 8x2+4x-16=-x2 | | 0.02x=0.04x-120 | | 14/7x=84 |