If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5v^2+10v-40=0
a = 5; b = 10; c = -40;
Δ = b2-4ac
Δ = 102-4·5·(-40)
Δ = 900
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$v_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$v_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{900}=30$$v_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(10)-30}{2*5}=\frac{-40}{10} =-4 $$v_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(10)+30}{2*5}=\frac{20}{10} =2 $
| 26q-5=71q-95 | | 7=2+v | | x/9-14=-14 | | 9x+77=x | | 8=5r-2-7r | | 2y-24=-6y+48 | | 13=h/7 | | y+5=5 | | 9~h=45~ | | 6(3x+1)+5(10–4x)=39 | | 6y+4-3y=-5+7+17- | | -4=-2/7(-2)+b | | 5x+35=8x-7 | | 35(28)=20(13-x) | | 26=10k–4 | | 6x+90+90=180 | | 24×+6y=60 | | 7/6(j+4)=5 | | n+12=6-8n | | -8y+3y+9=-11 | | (9x-5)/(5x-5)=2/1 | | -4+w/2=-6 | | 4,12m=0 | | 3x+8+2x-8+x+12+2x+4=360 | | 18+27y=39 | | (3y+2)+65+65=180 | | -6s=-54 | | 123=31x-63 | | -3k=-36 | | 2(2n+5)=4n+10 | | 35(28)=13-x(20) | | -4(-15-5y)=-40 |