If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5u^2=100
We move all terms to the left:
5u^2-(100)=0
a = 5; b = 0; c = -100;
Δ = b2-4ac
Δ = 02-4·5·(-100)
Δ = 2000
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$u_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$u_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2000}=\sqrt{400*5}=\sqrt{400}*\sqrt{5}=20\sqrt{5}$$u_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-20\sqrt{5}}{2*5}=\frac{0-20\sqrt{5}}{10} =-\frac{20\sqrt{5}}{10} =-2\sqrt{5} $$u_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+20\sqrt{5}}{2*5}=\frac{0+20\sqrt{5}}{10} =\frac{20\sqrt{5}}{10} =2\sqrt{5} $
| X^+8=6x | | 3n+10n=17;5 | | 35-6x=5x+2 | | G(x)=12x+2x | | F(21)=2x-7 | | 448.26=180+1.02x | | --2(1-4)=10-2t | | 3(x13)-x=9 | | u/4=8/13 | | 22-5x=16-3x | | 10n=400 | | 3(4x+11)-3=-9x+30-3x | | -2.2x3.7= | | 2d2−19d+14= −6d−6d | | n+16=39 | | 100x-99x=1 | | (2x^2)=180 | | 448.16=230+1.08x | | (2x)(2x)=180 | | 12x+4=28+20x | | 7y^2+21=0 | | 90+4x-15+x=180 | | 4(2x-4)-2x-2=-36 | | r/4+1=-9 | | x^2−10x+31=0 | | 10. 3(6+5y)=2(–5+4y) | | 8.2x-3.5=94 | | 2=4x-2(3x+7) | | {2x—7}=5 | | 16(4–3m)=96(–m2+1) | | 3y+48=7y | | 2(-3-h)-6=-5 |