If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5t^2+8t+3=0
a = 5; b = 8; c = +3;
Δ = b2-4ac
Δ = 82-4·5·3
Δ = 4
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{4}=2$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(8)-2}{2*5}=\frac{-10}{10} =-1 $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(8)+2}{2*5}=\frac{-6}{10} =-3/5 $
| 3(d-3)=4d+2 | | -1/9/x+3+-3/5/x+4=10/x+3+-9/x+4 | | 5x-11=7x+9=180 | | 5x+11=7x-9=180 | | (5x+11)+(7x-9)=180 | | (8-x)+4=21 | | 0.6x+200=0 | | 200=v1+15(20) | | 3y-13=2y-7=180 | | 3y-13=2y-7 | | 4m+9=m | | (x-1)^3-x(x+1)^2=5x(2-x)-11(x+2) | | 3(2x+5)+4=37 | | 200-p=p-20 | | 8-5x=5x+108 | | x+1=-2+2x | | 5x+2=2x-82 | | 5x+2=2x–82 | | 3x-7=24*2 | | 3+7x=x-15 | | 4x^2-15x+28=0 | | 4x+10-25=180 | | -4x+-8=21 | | 5x-35=-19 | | 25+76+x=180 | | -7+21x=224 | | 25°+72°+x=180° | | 25°+75°+x=180° | | x(x+)=288 | | 5x+16=89 | | 1+2z+z=13 | | 3m-6=14m |