If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5t^2+30t=60
We move all terms to the left:
5t^2+30t-(60)=0
a = 5; b = 30; c = -60;
Δ = b2-4ac
Δ = 302-4·5·(-60)
Δ = 2100
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2100}=\sqrt{100*21}=\sqrt{100}*\sqrt{21}=10\sqrt{21}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(30)-10\sqrt{21}}{2*5}=\frac{-30-10\sqrt{21}}{10} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(30)+10\sqrt{21}}{2*5}=\frac{-30+10\sqrt{21}}{10} $
| 5z2-30=0 | | (2x+3)2=81 | | 8-2(3x+4)=5x-6 | | 2z/7-4=9 | | 5x+3x-7x=5x | | 2(y+3)=y-3 | | X2+k=G | | x-5/3=3-2x/7 | | 2x/3+3x/3=x/3+8/3 | | (-x+4)(-x-5)(x-1)=0 | | 2(11x-3=104 | | z^2=0.6 | | (-x+4)(-x-5)(x-1)+18x-18=0 | | 3x/2-5=x+7 | | -6x+14/4=5 | | 2x-4+3x=5x-1 | | (10^2+5^2=x^2 | | 15(x-1)+4(x+3=2(7+x) | | 7x-3(4-7x)=14 | | 4x+3=20-6x | | x2+6x+9/x+3=7 | | 2=1.015^4t | | 16-y2=10(4+y) | | 4x^2=223 | | 11y/2=-4 | | (.0043)/(100)=(14)/(x) | | 4=9/6+5a/6 | | 6-4=3x+14 | | 54=n(n-3) | | 13r+15=-2r | | 5(t-32)=5/2 | | y×y+3=2y+1×y+1÷2 |