If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5r^2-180=0
a = 5; b = 0; c = -180;
Δ = b2-4ac
Δ = 02-4·5·(-180)
Δ = 3600
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$r_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$r_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{3600}=60$$r_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-60}{2*5}=\frac{-60}{10} =-6 $$r_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+60}{2*5}=\frac{60}{10} =6 $
| X/2+2x/3=2(x-5 | | Y-10x+2=4(-2x+2) | | X+2x/3=2(x-5 | | |4x+10|-12=6 | | -5/9x=20 | | 3s-20/3=2 | | 3=1/4x-7 | | 9+-1=k | | A^2+6b=-9 | | 3+2x=35 | | EG=100,EF=4x-20,FG=2x+30 | | 3p+6p-5p+3=15 | | x+-0.756x=0.244x | | 5y-2y-2y=8 | | 0.5(4x+3)=2 | | 5h-3h+4=6 | | 12=1/3.x | | 1.50x+2(-0.75+15)=30 | | 10−6f=-8f−10 | | b=2b−5 | | -10+8r=10r+10 | | 6d=-2+5d | | 3u+4u-4u-3u+u=19 | | -9+5r=6r | | EG=100,EF=4x-20,FG=2x+30x= | | 3u=6u+9 | | 17y+y-6y-8y-y=18 | | 9d+5d-7d=7 | | 14b-2b-5b-3b=12 | | -10-x=95 | | 10p-2p=8 | | b^2-5b=84 |