If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5r^2-10r-8=0
a = 5; b = -10; c = -8;
Δ = b2-4ac
Δ = -102-4·5·(-8)
Δ = 260
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$r_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$r_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{260}=\sqrt{4*65}=\sqrt{4}*\sqrt{65}=2\sqrt{65}$$r_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-10)-2\sqrt{65}}{2*5}=\frac{10-2\sqrt{65}}{10} $$r_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-10)+2\sqrt{65}}{2*5}=\frac{10+2\sqrt{65}}{10} $
| -1/4n-5=7/4n+3 | | (x+3)(x-4)=48 | | (-3)-(-1)+4-(-1)=x | | Y=16x^2+59x+20 | | 51x=25 | | (x+4)(x+3)=48 | | 2x+1/3=-7.666 | | 6-3/4+1/3=-1/2x+5 | | ?x24=-12 | | 9-4g=13 | | (-9)+(-7)+9+4=x | | 8.2n=2400 | | ?x24=12 | | 15x+4x=6x-86-x | | 6(x-2)+5=23 | | (-9+(-7)+9+4=x | | 2x+1/3=-7(2/3) | | 81+13x=-23 | | (-6)-(-8)-4-6=x | | 950=40x+3(20x)+6(15x) | | -2=16+9x | | 13=23-d | | 2(2x+3)-(2x-7)=13 | | 6k2-5k-6=0 | | 6h2-37h+6=0 | | 4+2y=-2-5y | | f(3)=4(0.6)^3 | | 7+(-5)+(-2)+9=x | | 6h2–37h+6=0 | | 2x+1/3=-72/3 | | 2y=-5-5y | | (-9)-4+(-2)+(-6)=x |