If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5n^2+12n+4=0
a = 5; b = 12; c = +4;
Δ = b2-4ac
Δ = 122-4·5·4
Δ = 64
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{64}=8$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(12)-8}{2*5}=\frac{-20}{10} =-2 $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(12)+8}{2*5}=\frac{-4}{10} =-2/5 $
| -2.5w=15 | | 6n-8=36 | | 8x+6-12=30 | | 18-6w=-24 | | 11n-9=-31 | | -155-4x=6-3x | | 5-4(2b-5)+3=15 | | 17+8x-3=84 | | 1/2(10h-5)=12.5 | | 7^2x+12=7^10x | | 2x-9=96 | | (3x-5)+(19-x)2x= | | -3(y+1)+10y-4=14 | | -5/3y=-15 | | 2+(x*6)=38 | | 3t-5=t+5 | | 23x/20+4x-13/5=7x/5+4x-5/20 | | 2+(x*6)=28 | | 4(x+2)+2=2(x+6) | | 2u/9=-12 | | r/2-4=14 | | 2j-10j=-32 | | 7y/3=35 | | 5n-10=3n+36 | | r/2-6=15 | | 3k+9=15 | | −3t2+11t−6= | | 50-4x=180 | | 22*x=220 | | x+127=70 | | 27,500=(9.5x)+(2.5*(.6*x)) | | 1/16=64^4x-2 |