5n2+10n+5=O(n2)

Simple and best practice solution for 5n2+10n+5=O(n2) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 5n2+10n+5=O(n2) equation:



5n^2+10n+5=(n2)
We move all terms to the left:
5n^2+10n+5-((n2))=0
determiningTheFunctionDomain 5n^2+10n-n2+5=0
We add all the numbers together, and all the variables
4n^2+10n+5=0
a = 4; b = 10; c = +5;
Δ = b2-4ac
Δ = 102-4·4·5
Δ = 20
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{20}=\sqrt{4*5}=\sqrt{4}*\sqrt{5}=2\sqrt{5}$
$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(10)-2\sqrt{5}}{2*4}=\frac{-10-2\sqrt{5}}{8} $
$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(10)+2\sqrt{5}}{2*4}=\frac{-10+2\sqrt{5}}{8} $

See similar equations:

| 5x+6=2+2x | | 40/n=10 | | 3m-17=34 | | 9.05r=27.15 | | b=30/6 | | (x+2)+(x+4)=3x | | 2^(x-3)=2^(-x+2) | | -2ײ+8x+10=16 | | -2x²+8x+10=16 | | 2.2(y+6)=14 | | 3p-2/4=4p=2/3= | | 3p-2/4=4p+2/3= | | 13+n2=29 | | 45-3n=18 | | 8n-31=25 | | 11n=45+21 | | 100-7n=72 | | 6n-22=32 | | 54=6+12n | | 3x^2+2x=8x | | 3x+6+4x=7x+4 | | 3a/4+4=2a/3 | | x=(1331)^(-1/3) | | -4-3y=12y+11 | | -4-3y=12y+1@ | | 5+4(n-7)=21* | | y+2.5=13.5 | | F(x)=2/3x+5G(x)=-1/3x+1 | | 5^x=25/5^x | | x-71=16 | | 1+38x=66+105x | | 3y+1/2y-1=2/3 |

Equations solver categories