If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5n+34=-2n(1-7n)
We move all terms to the left:
5n+34-(-2n(1-7n))=0
We add all the numbers together, and all the variables
5n-(-2n(-7n+1))+34=0
We calculate terms in parentheses: -(-2n(-7n+1)), so:We get rid of parentheses
-2n(-7n+1)
We multiply parentheses
14n^2-2n
Back to the equation:
-(14n^2-2n)
-14n^2+5n+2n+34=0
We add all the numbers together, and all the variables
-14n^2+7n+34=0
a = -14; b = 7; c = +34;
Δ = b2-4ac
Δ = 72-4·(-14)·34
Δ = 1953
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1953}=\sqrt{9*217}=\sqrt{9}*\sqrt{217}=3\sqrt{217}$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(7)-3\sqrt{217}}{2*-14}=\frac{-7-3\sqrt{217}}{-28} $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(7)+3\sqrt{217}}{2*-14}=\frac{-7+3\sqrt{217}}{-28} $
| 8-4x=16=3x | | 6=7x=-71 | | F(0)=6-6x | | 25x-x^2=50 | | 253=78-w | | p^2=0.01444 | | x+5x+4x+2x=360° | | h2+3h=30 | | 6-4x=4x-9x-8 | | 30=12−6r | | C(x)=10.5x+8 | | x-72=-x2 | | −2/3m−4=10 | | 9=3d+6 | | 6.00+.5x=10+.25x | | v-9.1=3.16 | | F(-9)=6-6x | | C(x)=10.5x | | 3x3x3x3x3x3x3x3x3x3=3x3x3x3x3x3x3 | | 6(q+3)=48 | | 146+2x=245-5x | | u/7+44=53 | | F(X)=240-15x | | 3x+2x=110° | | -140=7(3n+4) | | 4x+95=3(14x+9) | | F(x)=240-15× | | 3(8-c)= | | 3^(x+1)+3^(x)=3^(2)*4 | | 14x+27-10x-3=13x+2x-6+8 | | (2x-10)^3=180 | | -3n-22=91 |