If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5n(4n+5)=0
We multiply parentheses
20n^2+25n=0
a = 20; b = 25; c = 0;
Δ = b2-4ac
Δ = 252-4·20·0
Δ = 625
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{625}=25$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(25)-25}{2*20}=\frac{-50}{40} =-1+1/4 $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(25)+25}{2*20}=\frac{0}{40} =0 $
| 8x+110/7=10 | | 9-(2x-5)=28 | | a+5=-4+5 | | -4-2.7=7x-6.0 | | 8x+52=13x-1 | | 3+49=21x+7 | | 91=7(k−77) | | 8.75x+24.4=3.7 | | 17x+4.9=-670 | | 2x2{2}+31=17 | | -26n-77=n+355 | | 2x-30°=80° | | 6y-9=13y | | 2x+30°=80° | | −8+3x=4 | | 4x-1x+2=3x-7 | | −8+3x=44 | | w+293=-6w-29 | | 8x-49/5=3 | | 3/7t+13=7 | | a-619=-27a-3 | | -5c+18-6c+20=60 | | -9=5x-2 | | -7x+73=x+473 | | 122-u=208 | | X+15+x+5+x-5=180 | | 2(x−3)+1=1x−4 | | 18p+9=p-314 | | 5r+10=-15 | | (x−2)+2=3x−3 | | b+53=-3b-3 | | f/4+12=13 |