If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5n^2+11n-9718=0
a = 5; b = 11; c = -9718;
Δ = b2-4ac
Δ = 112-4·5·(-9718)
Δ = 194481
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{194481}=441$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(11)-441}{2*5}=\frac{-452}{10} =-45+1/5 $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(11)+441}{2*5}=\frac{430}{10} =43 $
| 4x+18=5x/2 | | 30=4y-14 | | 6•16x-1=90 | | 21=y/3-10 | | 216=36^4-x | | 3m-11=2m+3(2m-2) | | 216=36^2x | | -2n+3(n+1)=5n-17 | | 2n^2+13n-3219=0 | | x^2-15=8 | | -848=16h | | 22b=264 | | 2p=9.42 | | 5x+2x-15=13 | | 7+j=91 | | 2a+6=A-4 | | 7(x+2)10=7x+4 | | 4x-10=7x-31 | | 8x=464 | | 7.2=w/12 | | R=1.03+7.11t-0.38t^2 | | 3x-1/2=60 | | {2^(2n+5)-2^2}÷{2^(n+1)}=4 | | 13(6x+27)+2(x−3)=7 | | 38=5m+3 | | 20−(3x−9)−2=−(−11x+1) | | X^2+12=2x+15 | | 4x/2=21/2 | | 7x+6x=375 | | r+1/2=5.6 | | 18.75=x-4 | | 10p-6=5p |