5m-14+3m+8+2m-7+3/2m+2=58

Simple and best practice solution for 5m-14+3m+8+2m-7+3/2m+2=58 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 5m-14+3m+8+2m-7+3/2m+2=58 equation:



5m-14+3m+8+2m-7+3/2m+2=58
We move all terms to the left:
5m-14+3m+8+2m-7+3/2m+2-(58)=0
Domain of the equation: 2m!=0
m!=0/2
m!=0
m∈R
We add all the numbers together, and all the variables
10m+3/2m-69=0
We multiply all the terms by the denominator
10m*2m-69*2m+3=0
Wy multiply elements
20m^2-138m+3=0
a = 20; b = -138; c = +3;
Δ = b2-4ac
Δ = -1382-4·20·3
Δ = 18804
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{18804}=\sqrt{4*4701}=\sqrt{4}*\sqrt{4701}=2\sqrt{4701}$
$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-138)-2\sqrt{4701}}{2*20}=\frac{138-2\sqrt{4701}}{40} $
$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-138)+2\sqrt{4701}}{2*20}=\frac{138+2\sqrt{4701}}{40} $

See similar equations:

| 7(r-84)=28 | | 18.3x42.7=134.2 | | X=2.53x | | x/5-13=-2 | | y=419=y+19 | | 12=4g−4 | | 2/3(9-3x)=12 | | 5c−33=9−c | | 10x-6=10x+6 | | 80-5h=40 | | -0.5(4x-10)=3x+5-5x | | 44/x+71=82 | | 2x−75=−3 | | x+7=27;x= | | x/5=9.5 | | 14=3x-9x-2 | | u-1.8=9.4 | | 5m=620 | | -14+3x=14-x | | x÷¾=16 | | 3/4+d=7/8 | | 8/10=x=25 | | -2(3x+4)=-5x-2-2x+5 | | -11d+5=-6d-14 | | 2a+3=a-1 | | 2y-3y+5y=0 | | 4x+11+3x-20=0 | | 211=2x-91 | | 2a+3=a-1 2a+3=a-1 | | 3/4x=7=22 | | 4b-5=11, | | -5y+7=22 |

Equations solver categories