If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5k^2+30k=0
a = 5; b = 30; c = 0;
Δ = b2-4ac
Δ = 302-4·5·0
Δ = 900
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{900}=30$$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(30)-30}{2*5}=\frac{-60}{10} =-6 $$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(30)+30}{2*5}=\frac{0}{10} =0 $
| k+15=3 | | 5.6+2=2.6g+8 | | x^2-112x-480=0 | | -9(v+5)=-81 | | 11d-16d=15 | | 3/50-x/50=7/50 | | (112)=(4x)=(3x+12) | | 7-x/4=-3 | | 5.9g+6=1.9g+22 | | 5a+-8=12 | | v/6+6.1=13.1 | | x^2+x-2.1525=0 | | -16+n=9 | | 4(80-8x)=80 | | 6a-11a+-8=12 | | -3.1+y/4=-9.5 | | -4y+7(y-3)=-30 | | -4y+7(y-3)=-3- | | 2.5+y/8=-10.3 | | 2000x-4000=8000 | | 8/3x+1/3x=1/1/3+5/3x | | 2k+-k+-7=-9 | | 30=-10b | | 10=-4w+6(w+3) | | 8k+2.8=10 | | 19k-18k=12 | | 6v+4(v-8)=38 | | Y-x=2x-2/3x | | 3f+12=3(f-12) | | 7h+4h=-11 | | 220-w=126 | | 5x+9=-23-6x |