If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5k(k+7)=0
We multiply parentheses
5k^2+35k=0
a = 5; b = 35; c = 0;
Δ = b2-4ac
Δ = 352-4·5·0
Δ = 1225
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1225}=35$$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(35)-35}{2*5}=\frac{-70}{10} =-7 $$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(35)+35}{2*5}=\frac{0}{10} =0 $
| 6a^2+10a+12=10 | | 8y-25=13-11y | | F(13)=3(-2x+7) | | -8m-(-4m)+-20=-4 | | x+96=8 | | 10x-3x-20=9 | | 3x^+18x-21=0 | | x2+12+27=0 | | 28+y=24 | | 15n-9n-2n=20 | | 10x-22=3x+13 | | (5h-4)(8h-7)=0 | | (5h-4)(8h-7=0 | | 11h-h-4=16 | | 6c-(c-4)=29 | | 3a-15-6=-15 | | 5x-3(2x-8)=31 | | 2=11g+3 | | -10x+1=-10x+1 | | (2x-5)(9x-7)=0 | | 7x+7=12x+12 | | 4/3x3=84 | | x°+75°=180°x°= | | G(g-2)=0 | | 30/d+1=4 | | 2d-(-5d-5)=-9 | | 3a+15-6=-15 | | (8z+5)(z+4)=0 | | 16a+-17a-(-8a-15)=-6 | | (8z+5)(z+4=0 | | 8n+12=14n+24 | | 3.5+11.7=-70-5.1y |