5h-293/2h+40=10

Simple and best practice solution for 5h-293/2h+40=10 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 5h-293/2h+40=10 equation:



5h-293/2h+40=10
We move all terms to the left:
5h-293/2h+40-(10)=0
Domain of the equation: 2h!=0
h!=0/2
h!=0
h∈R
We add all the numbers together, and all the variables
5h-293/2h+30=0
We multiply all the terms by the denominator
5h*2h+30*2h-293=0
Wy multiply elements
10h^2+60h-293=0
a = 10; b = 60; c = -293;
Δ = b2-4ac
Δ = 602-4·10·(-293)
Δ = 15320
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$h_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$h_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{15320}=\sqrt{4*3830}=\sqrt{4}*\sqrt{3830}=2\sqrt{3830}$
$h_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(60)-2\sqrt{3830}}{2*10}=\frac{-60-2\sqrt{3830}}{20} $
$h_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(60)+2\sqrt{3830}}{2*10}=\frac{-60+2\sqrt{3830}}{20} $

See similar equations:

| 5x2+16x−45=0 | | -4(a+2)=3(2a+1) | | 15-t+8t=(-13) | | 4+3(x-7)=-26 | | (x−2)^4=0 | | 3(9/2)-3b=-6 | | 2x+20=12x+8 | | 4x+12=7x-32 | | (-12)-5(6-2m)=18 | | 2/3x23/22+1/6=-3x23/22+4 | | (7(3x-6))/3=-7 | | 6x-18x=-48 | | 4.85/100=v | | 3a-3(13/2)=-6 | | 3/4=j+1/2 | | 4(6x-2)=2(7x/4+5) | | 4800=48(p+20) | | 5r-4=-44 | | 80n-21n=354 | | 32=-8g+44 | | (5x/6)+2=7x/10 | | 60n-46=84 | | 5-w=-5 | | -9v-4=5v2 | | 40l+10=20+15 | | -9v-4=5v^2 | | -25=-5(4x-3) | | 30=2*8+2w | | w^2-5w-1=17-2w | | K/2+3-2k=-3 | | 8=6-z | | 30=2(8)+2w |

Equations solver categories