5c(c-3)=-(c+2)=

Simple and best practice solution for 5c(c-3)=-(c+2)= equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 5c(c-3)=-(c+2)= equation:



5c(c-3)=-(c+2)=
We move all terms to the left:
5c(c-3)-(-(c+2))=0
We multiply parentheses
5c^2-15c-(-(c+2))=0
We calculate terms in parentheses: -(-(c+2)), so:
-(c+2)
We get rid of parentheses
-c-2
We add all the numbers together, and all the variables
-1c-2
Back to the equation:
-(-1c-2)
We get rid of parentheses
5c^2-15c+1c+2=0
We add all the numbers together, and all the variables
5c^2-14c+2=0
a = 5; b = -14; c = +2;
Δ = b2-4ac
Δ = -142-4·5·2
Δ = 156
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{156}=\sqrt{4*39}=\sqrt{4}*\sqrt{39}=2\sqrt{39}$
$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-14)-2\sqrt{39}}{2*5}=\frac{14-2\sqrt{39}}{10} $
$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-14)+2\sqrt{39}}{2*5}=\frac{14+2\sqrt{39}}{10} $

See similar equations:

| 5x+4=14+x+ | | -2+3w=-11 | | 2v=v+61 | | Y-15/4y+1=0 | | u+68=5u | | n+14=35 | | 11=w+9 | | 35-2x=75-8x | | 7w-11=9w-15 | | √7w-11=√9w-15 | | 16c+24=4c+144= | | 5x+36=5x+36 | | 10÷x+6=8 | | 5.4–0.1x=0.4x+8.4 | | (180-(4x+8))+(180-(5x+5))+(180-(6x-1))+(180-(3x))+(180-(5x+3))=540° | | 2x+4.5=4x–1.9 | | 0=10x^2-17x+6 | | -16+3=-8-5x | | 7y/5-y=4 | | (4x+8)+(5x+5)+(6x-1)+(3x)+(5x+3)=360 | | 0=10w-15=23 | | 16v−6v−1=9 | | -6.1+x=-6.7 | | 4t+t-5=5 | | 7x+4=x+22 | | 7/5y-y=4 | | h-16=-h | | 5q-4q=1 | | 7c-2=-19+8c | | -9j+16=-8j | | 15w-16=19+10w | | 13-17c=-18c |

Equations solver categories