If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5a^2-64=0
a = 5; b = 0; c = -64;
Δ = b2-4ac
Δ = 02-4·5·(-64)
Δ = 1280
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1280}=\sqrt{256*5}=\sqrt{256}*\sqrt{5}=16\sqrt{5}$$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-16\sqrt{5}}{2*5}=\frac{0-16\sqrt{5}}{10} =-\frac{16\sqrt{5}}{10} =-\frac{8\sqrt{5}}{5} $$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+16\sqrt{5}}{2*5}=\frac{0+16\sqrt{5}}{10} =\frac{16\sqrt{5}}{10} =\frac{8\sqrt{5}}{5} $
| -4+7x-2x=6 | | 916=4n | | f(2)=6^2 | | 500=20s | | 1/2(4x-8)=x+x=4 | | 5x2-45=0 | | x+.1x=275 | | 27j=729 | | 11x-44=180 | | 14=n-41 | | p-13=59 | | 0.4x-0,0666666666666x=2 | | n=51-45 | | n=51−45 | | 1/9x7=x | | 10.2x+43.96=-9.8x+43.14 | | 24r=384 | | x=-3=-2 | | n-28=3 | | 6x-9=2(2x-3) | | 6x-8=4- | | w+13=91 | | 3/6n=-1/4 | | -3(t-7)-(t+4)=8 | | 8.6+8.3(x)=89.7 | | 16/x+16=4/13 | | 25c=450 | | 5(x+7)=3x+5 | | -12m+22=-8m+30 | | 25c=45 | | -3x-6=13 | | 8x-20=-5x+19 |